Preparation and in vitro/in vivo characterization of enteric-coated nanoparticles loaded with the antihypertensive peptide VLPVPR
نویسندگان
چکیده
Our previous study revealed that the peptide Val-Leu-Pro-Val-Pro-Arg (VLPVPR), which was prepared using deoxyribonucleic acid recombinant technology, effectively decreased the blood pressure of spontaneous hypertensive rats; however, the effect only lasts 6 hours, likely due to its low absorption in the gastrointestinal tract. To overcome this problem, the purpose of this study was to characterize (methoxy-polyethylene glycol)-b-poly(D,L-lactide-co-glycolide)-b-poly(L-lysine) nanoparticles as in vitro and in vivo carriers for the effective delivery of VLPVPR. In our study, the VLPVPR nanoparticles were prepared using a double emulsion method, coated with Eudragit S100, and freeze-dried to produce enteric-coated nanoparticles. The optimized parameters from the double emulsion method was obtained from orthogonal experiments, including drug loading (DL) and encapsulated ratio (ER) at 6.12% and 86.94%, respectively, and the average particle size was below 100 nm. The release experiment demonstrated that the nanoparticles were sensitive to pH: almost completely released at pH 7.4 after 8 hours, but demonstrated much less release at pH 4.5 or pH 1.0 in the same amount of time. Therefore, the nanoparticles are suitable for enteric release. In vivo compared with the untreated group, the medium and high doses of orally administered VLPVPR nanoparticles reduced blood pressure for more than 30 hours, demonstrating that these nanoparticles have long-lasting and significant antihypertensive effects in spontaneously hypertensive rats.
منابع مشابه
Preparation, Characterization and in vitro Release Studies of Enoxaparin in Nanoparticle form and Enterically Coated Tablets Containing Different Enhancers
In the past decade, many strategies have been developed to enhance oral drug delivery. Different techniques were investigated, amongst those the use of permeation enhancers such surfactants and biodegradable polymers were studied more extensively. Chitosan derivatives have been studied as permeation enhancer in free soluble form and as nanoparticulate systems. The aim of the current work wa...
متن کاملPreparation of Methotrexate loaded PLGA nanoparticles coated with PVA and Poloxamer188
Objective(s): Nanoparticles offer an attractive platform for drug delivery through a wide variety of the body's physiological barriers. Furthermore, modification of nanoparticle surface with moeites such as Poloxamer188 can enhance their accumulation and localization at disease site. In this work, we investigated the physiochemical effect of a scavenger receptor (SR-BI) interac...
متن کاملOriginal Research Nano-adjuvanted polio vaccine: Preparation and characterization of chitosan and trimethylchitosan (TMC) nanoparticles loaded with inactivated polio virus and coated with sodium alginate
Objective(s): It is proposed that particulate antigens could better interact with the antigen presenting cells (APCs). A fast, simple and scalable process for preparation of polymeric nanoparticles (NPs) is coating of charged antigenic particles, like viruses, with oppositely charged polymers. A second coating with a charged polymer could increase the stability and modify the immunomodulatory ...
متن کاملNimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies
Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...
متن کاملNimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies
Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...
متن کامل